
-R123 255 SUBTLE MRNURLC(U) STRNFORD UNIV CR DEPT OF COMPUTER I/ -
SCIENCE M R GENESERETH ET RL. JRN Si HPP-i-ii-REV-3
N88814-8i-K-8804NCLASSIFIED F/G 9/2 NLU C LASflE ~EhhElhlh=hhEEE

EIIIEEEEIIEEI
EQllll~l

- - -~- -~ ~ - " .w. t-

1j.
IIUI 16o 12.0

im ma

IfI1.25 I IA iJ

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDAROS-1963-A

4p

~C

Stanford Heuristic Programming Project January 1981
Memo HPP-81-11 (Working Paper) Revision 3.

SUBTLE Manual

Michael R. Genesereth
Milton'Grinberg

Jay Lark

r

DTIC
JAN I 11983

i -h

Department of Computer Science
Stanford Univeisity

Stanford, California 94305

83 01 11 062.

=...... .. . - - - " .
,~ ..-.. . . _. . '-.. _- :- ,---- .:"

2

Ch r 1 - Introduction

SUBTLE is a language for describing the design of digital circuits. The
language enables one to specify complete or partial information about a device's
structure (its parts and their interconnections), its behavior, and its teleology
(arguments showing how the structure gives rise to the behavior).

The syntax of SUBTLE is a prefix version of the language of predicate calculus
and is identical to that used by MRS [Genesereth, Greiner, Smith]. The reader
unfamiliar with MRS is encouraged to browse through the brief description in
appendix 1 before starting on the manual. An interactive graphics interface
coordinated with SUBTLE is currently under development [Lark] and should be
available in the Spring of 1982.

There is also an interactivsimulator/reasoner called SHAM. SHAM is
essentially an "interpreter" fbr SUBTLE and can be used to explore the
consequences of a design and thereby detect incompleteness or inconsistency. For
further information on SHAM, the reader should see [Grinberg and Lark].

Chapter 2 of this manual describes SUBTLE's structural vocabulary, and
chapters 3, 4, and 5 describe its behavioral vocabulary.. The behavior of a circuit can
be characterized either by specifying its outputs directly in terms of its inputs or by
describing the internal events that take place in normal operation. Chapter 3
introduces the vocabulary for time-dependent and time-independent I/O
specification, and chapter 4 presents the vocabulary for describing events. Chapter 5
presents a programming language equivalent to the formalism of chapter 4.
Appendix 1 is a brief introduction to the syntax of MRS; appendix 2 contains a
complete SUBTLE dictionary, and appendix 3 presents SUBTLE descriptions of a
number of common circuits.

Ac.ceSsion Per

.W-" ' l -t AI 00 -
DtitT'3 01

\ JUf tl t ict 1l------

By - _ _

Dtstribution/

Availability Codes
, Avail and/or

' Spetal

'-4 3

Chapter 2 Structure

The structure of a device is specified by describing its parts and their
interconnections. The struct6re of each part can in turn be described until one
reaches one's "primitive" components (which are usually characterized behaviorally).
As an example of structural description in SUBTI: E, consider the 2 by 4 decoder
shown in figure 1.

Dlx~ x y Do DI D2 D
0 0 ! 0 00
0 1 0 1 0 0
1x' 0 0 0 1 07 :L! D2 I ! 0 0 0 I

D3 OXY

(a) Losic diarma (b) Truth table

Figure 1 - A 2 by 4 decoder [Mano page 531

2.1 Parts

The first step in describing a device is to enumerate the parts. In SUBTLE each
part can be designated by either an atomic name (e.g. A14) or a functional
description (e.g. (ampi if ier-of M74)). A good practice is to assign each part a
unique name and equate the name of a part with its functional description where
desired. For example, the following statement asserts that A14 is the amplifer of M74.

(= (amplifier-of M74) A14)

{Footnote: Therm is.a..subtle distinction between these two possibilities: any statement
including a nan*id object (lkce A14) is a statement about the object itself; any statement including a
functional descriptiqu is a poperty of the role the object fills and must be true of any object that
plfys that role.}

The parts. of. : dvciev are associated with the device itself via the subpart
relation. For example,.the components of the 2 by 4 decoder in figure 1 are related
to the entire circuit (called M74) by the following statements.

(subpart fnv-1IniT4i
(subpalt- -hv-2 i-74)
(subpart ,and3-1 m74)
(subpqrt..and3-; .,174)
(subpart and3-3'm74)
(subpart and3-4 m74)

-For .conyenience, .multiple part statements can be combined into a single
statement using the subpart* relation, which associates a set of parts with the device
they comprise. Thus, the above 6 statements could be rewritten as follows.

4

(subpart* inv-1 inv-2 and3-1 and3-2 and3-3 and3-4 M74)

The type of each part is declared using the type relation. The following
assertions declare the types of the components: inv-i and inv-2 are inverters; and3-
1, and3-2, and3-3, and and3-4 are 3-input and-gates.

(type inv-1 inv)
(type inv-2 inv)
(type and3-1 and3)
(type and3-2 and3)
(type and3-3 and3)
(type and3-4 and3)

Alternatively, one can take advantage of SUBTLE's part naming convention to
declare types implicitly. If one uses a hyphenated name followed by a number (e.g.
and3-1), this implies that the object so designated is of the type specified by the
word before the hyphen (e.g. and3-1 is of type and3). Given the names of the parts
above, this convention eliminates the need for those statements altogether.

2.2 Connections

Every device in SUBTLE has zero or more inputs and outputs, and these
"ports" are designated using the functions input and output. For example, (input 2
and3-3) would designate the second input of and3-3, and (output 3 M74) would
designate the third input of M74. One can also assign mnemonic names to the inputs
and outputs using equivalence statements like the following.

(= (enable M74) (input 1 M74))

The numbers of inputs and outputs are specified using the relations s izein and
sizeout, e.g. the following statements declare M74 to have 3 inputs and 4 outputs.

(sizein M74 3)
(sizeout M74 4)

Connections are made between the ports of devices. The next 18 assertions
specify the wiring diagram for M74. For example, the first assertion states that the
first input of M74 is connected to the first input of inv-1.

(conn (input 1 m74) (input 1 inv-Z))
(conn (input 1 m74) (input 2 and3-3))
(conn (input .1 m74) (input 1 and3-4))

(conn (input 2 m74) (input 2 and3-2))
(conn (input 2 m74) (input 2 and3-4))
(conn (input 2 m74) (input 1 inv-2))

(conn (input 3 m74) (input 3 and3-1))
(conn (input 3 m74) (input 3 and3-2))
(conn (input 3 m74) (input 3 and3-3))
(conn (input 3 m74) (input 3 and3-4))

5

(conn (output I inv-1) (input 1 and3-1))
(conn (output 1 inv-1) (input I and3-2))
(conn (output I inv-2) (input 2 and3-1))
(conn (output 1 inv-2) (input 1 and3-3))

(conn (output 1 and3-1) (output I m74))
(conn (output 1 and3-2) (output 2 m74))
(conn (output 1 and3-3) (output 3 m74))
(conn (output 1 and3-4) (output 4 m74))

For convenience, multiple connections to the same port can be collapsed into a
single statement using the conn* relation. For example, the first three statements
above can be summarized as. follows.

(conn* (input I m74)
(input 1 inv-1)
(input 2 and3-4)
(input 1 and3-4))

2.3 Generic Descriptions

The sections above discuss how a specific device can be described in terms of its
specific parts. In electronics most circuit descriptions are generic: they describe a
"prototypical" circuit of a given type, each instance of which has the stated structure.

In SUBTLE a generic circuit is treated as a set of physical devices, of which
each instance is a member. The structure of a generic circuit is specified by first
describing a typical member of the set and then stating that the circuit so described is
a prototype for the entire set. For example, the description of M74 can be made
generic by adding the following statement.

(prototype M74 2x4decoder)

The import is that every circuit c declared to be a 2x4decoder (say with a
statement of the form (type c 2x4decoder)) necessarily shares the same structure
and properties.

However, this statement is not enough in itself. In the examples above, the
prototype M74 is described as having a part called inv-i. Nothing in the description
distinguishes inv-i as a (possibiy) unique part for each distinct 2x4decoder from
i nv-i as a single part that is shared by all 2x4decoders. In order to discriminate
these cases, a generic description must also include a statement listing the parts not
necessarily shared by each instance of the circuit. In the case of the 2x4decoder, the
following statements would suffice.

(skolem M74 tnv-1)
(skolem M74 inv-2)
(skolem M74 and3-1)
(skolem M74 and3-2)
(skolem M74 and3-3)
(skolem 1474 and3-4)

6

A set of skolem statements can be abbreviated using the skolems relation. In this
way the above statements could be compressed to the single following statement.

3 (skolem* M74 inv-1 lnv-2 and3-1 and3-2 and3-3 and3-4) !

(Footnote: The entire description is equivalent to the following MRS statement.

(all M74 (exist inv-1 inv-2 and3-1 and3-2 and3-3 and3-4
*' (if (mem M74 2x4decoder)

<description above>))))

2.4 Parameterized Descriptions

As a result of regularity in the design of certain circuits, it is sometimes possible
for the design to be scaled up in size. For example, the 2 by 4 decoder described r
above can be generalized to an arbitrary n by 2n decoder. In SUBTLE circuits of
variable size are encoded using "parameterized descriptions".

As before, one names a prototype as shown below.

(prototype m74 ixjdecoder) r

For i by j decoder, there are two parameters, viz sizein (the number of inputs)
and sizeout (the number of outputs). In principle only one is necessary, since one
can be computed from the other; both are used here only for convenience. The
general relationship between sizein and sizeout can be stated as follows.

((t 2 (sizein m74)) (sizeout m74))

Each i by j decoder has i inverters and j and gates. The parts cannot be
individually named, because the number varies from device to device. However,
they can be designated by inventing corresponding functions inverter and andgate
that take an index and a device as arguments.

(if (<= 1 i (sizein m74)) (subpart (inverter i m74) m74))
(if (<a I j (sizeout m74)) (subpart (andgate j m74) m74))

The types of the parts can be declared using the access functions as follows.

(if (<= I i (sizein m74)) (type (inverter 1 m74) tnv))
(if (<= 1 j (sizeout m74))) (type (andgate j m74) andn))
(if ((1 j (sizeout m74))) (size (andgate j m74) (size m74))

Finally, the connections can be stated.

(if (<u 0 1 (size m74))
(conn (input 1 m74) (input i (inverter 1 74)))

(if (and (<z 1 m (t 2 (- (size m74) 1)))
(<s 0 n (- (/ (size m74) i) 1))).

(conn (output 1 (inverter i m74))
4I (input i (andgate (+ (* n (t 2 1)) m) m74)))) W

7

(if (and ((I 1 m (t 2 (- (size m74) 1)))
((=0 n (-(I (size m74) i) 1)))

(conn (input 1 m74)
(input i (andgate (+ (* n (t 2 1)) m) m74))))

(if (<x 0 j (,t 2 (size m74))
(conn (output 1 (andgate j m74)) (output j m74))

An instance of a parameterized circuit is declared by stating its type and filling
in the corresponding parameters. For example, a 3 by 8 decoder M38 could be
described as follows.

(type m38 ixjdecoder)
(sizein m38 3)
(sizeout m38 8)

• , • "'

- _-' . ii .< - . ._. , , :

8

Chapter 3 - IO Specification

3.1 Simple I/O

The simplest form of behavioral specification is a set of rules relating a circuit's
inputs to its outputs. As an example, consider the behavior of an inverter. When the
input is on, the output is off; and vice-versa. This behavior is captured by the
following two rules.

(if (on (input I Sinv)) (off (output 1 $lnv)))

(if (off (input I $inv)) (on (output 1 $nv)))

3.2 Time-dependant I/O

Note, however, that these 'ules say nothing about time, suggesting that the
output changes instantaneously with the input. This is physically unrealistic; and
while minute gate delays can often be ignored, timing considerations are sometimes
crucial. The most basic temporal primitive in SUBTLE is the relation true. (true p
t) is intended to mean that the proposition p is true at time t. Temporal behavior
can be captured by relating the inputs of a circuit at a given time to its outputs after
the appropriate interval. For example, the following statement means that, if the
input to an inverter is on at one time instant, the output will be off after an interval
equal to the gate delay of the inverter.

(if (true (on (input 1 Sinv)) St)
(true (off (output 1 Sinv)) (+ $t (delay $inv))))

In many digital circuits events are synchronized by clock pulses. In such designs
time can be broken into discrete "cycles", and temporal descriptions can be written
accordingly. For example, the following rendering of the above statement means
that, if the input to an inverter is on at a given tick of the clock, the output will be
off at the next tick.

(if (true (on (input I $inv)) St)
(true (off (output I $inv)) (+ $t 1)))

<Time intervals, periodic behavior, and frame axioms>

3.3 Procedural 1/O Specification

A rule-based approach to I/O specification works well when there are few
inputs and outputs and their relationship is straightforward. However, in many cases
the relationship can be quite complex and may be more easily described in the form
of a program.

In order to facilitate I/O specification in such cases, SUBTLE allows one to
associate a Lisp subroutine with a device via a statement like the one below. The
intended meaning of this statement is that, given a device's inputs, its output will be

9

the same as that of the subroutine given the same inputs.

(function device-1 qr)

Since many devices have multiple outputs, it's necessary to augment Lisp to
permit multiple return values. The values function illustrated in the definition below
indicates that the arguments are to be returned as values of the subroutine.

(defun qr (x y)
(values (quotient x y) (remainder x y)))

The setqs statement allows one to assign the values of a subroutine to a list of
variables. After execution of the following statement, the variables q and r would
have the values i and 11, respectively.

(setqs (q r) (qr 23 12))

It is important to realize that Lisp I/O characterization need not correspond to
the internal behavior of the device being described. Only the 1/0 must be accurate.
Furthermore, no side effects (using rplaca, rplacd, or setq) are permitted outside
the scope of the subroutine associated with a device. A more general approach to
procedural description, allowing interaction and side effects, and intended to reflect
the actual behavior of a set of interacting devices is presented in chapters 4 and 5.

10r

Chapter 4 -Procedural Characterization of Behavior

This c7hapter introduces the SUBTLE vocabulary for describing the behavior of ar
set of interacting devices. Thie vocabulary is also commonly used to describe the
internal behavior of a single device, since a single device is usually made up of a set
of interacting parts.

In SUBTLE a program consists of a set of events, arbitrarily ordered by
appropriate control and dataflow links. The structure of this "event graph" is
described by MRS statements very similar to those used in describing the structure
of a circuit. For visual immediacy, the structure can also be described in a two
dimensional graphical representation. This chapter presents both the propositional
and graphical languages, and chapter 5 presents a more traditional programming
language equivalent.

4.1 Action Boxes

An ac/ion box is the basic SUBTLE construct for describing some part of the
internal or external behavior of a device. The execution of boxes is coordinated and
controlled by the passing of tokens between boxes. Boxes can pass data to eachr
other by data paths. Boxes can also interact through a global database. This chapter
first describes the structure of boxes, and then goes on to other issues such as data

* . paths, databases, and control.

* Action boxes are referred to by name. A name can be any atomic symbol. A
box is declared by the statement:r

(Box (agent> (<SUBTLE Box> or (set of SUBTLE Boxes>)) - (agent> has the
given SUBTLE Boxes as part of its structure.

A box has several parts that can be classified according to function. The functional
classes are 1/0, preconditions, side-effects, and body. A box is represented
graphically as:

Sense Side
Condition Effect

4

Inports Outports

DataathsBox Body

TokenPaths

IF

4 11

4.1.1 Ports

Boxes can have an arbitrary number of input and output data ports. Each port is
connected to a single data path (see section 4.2.1). This is the primary method for
passing data into the body of the box. The semantics of an input data port are that
data must be present on the data path for the box to start executing, else the box
waits for the data to appear. Ports are represented in propositional form as:

(Inport <port#> <box>) - function that refers to the numbered input port of <box>.

(Outport <port#> <box>) - function that refers to the numbered output port of
<box>.

4.1.2 Sense-conditions

Each box has zero or more sense-conditions that must be true in the current state
of the world in order for the box to execute. Sense-conditions can be either
continuous or one-shot. A one-shot sense-condition must be true at the moment the
box attempts to start execution, while a continuous sense-condition must remain
valid during the entire execution of the box. If a continuous sense-condition
becomes untrue during execution the box stops executing. Sense-conditions are
expressed as MRS propositions, and may contain variables. Sense-conditions are
represented in propositional form as:

(ContSenseCond <ActionBox> <expression>) - continuous sense-condition of an
action box.

(OSSenseCond <ActionBox> <expression>) - one-shot sense-condition of an action
box.

4.1.3 Side-effects

Action boxes also have zero or more side-effects that become true in the current
state of the world when a box has finished executing. Side-effects are expressed as
MRS propositions in the following form.

(SideEffectAddition <ActionBox> <expression>)

4.1.4 Control

Each box also has connections for communicating control information. A box
attempts to execute when it receives a control token (see section 4.4). When
execution is complete, the box sends tokens down all control paths connected to it.

4.1.5 Body

The body of an action box can be a piece of Lisp code (a Lisp box) or a complete
SUBTLE graph (a SUBTLE subroutine). The proposition necessary to specify the
contents of an action box is:

12

(Function <ActionBox> <FunctionDescriptor>)- the functionality of<ActionBox>
is given by <Function Descriptor>, where <FunctionDescriptor> is the name of
either a Lisp or SUBTLE subroutine.

4.1.6 Lisp Boxes

The body of a Lisp box is a Lisp function. The number of arguments of the
function must correspond to the number of data input ports on the box. On entering
the procedure, the formal arguments are bound to the data from the appropriate
DataPaths. The procedure returns its value(s) with the special SUBTLE control link
returns. The statement to define the contents of a Lisp box is:

(DefLambda <name> (arg1 ... argn) <body>) - body of the Lisp box will be a
lambda expression with the name <name>.

4.1.7 SUBTLE Stubroutines

A SUBTLE network or graph can be formed by combining action boxes and
connecting them with token paths and data paths. A graph is started into operation
by a special set of tokens known as the InitSet of the graph. A graph can also have
external data lines that are connected to the inputs and outputs of the agent or
subroutine that contains it. The propositional representations for an lnitSet are:

(InitSet <agent> (set of <ActionBoxes>)) - specifies the boxf-s to receive tokens
when the agent is started.

(InitSet <subroutine> (set of <ActionBoxes>)) - specifies the boxes to receive
tokens when the subroutine is passed a token.

The content of a subroutine is a complete SUBTLE graph. When the subroutine
is executed the graph is started as though it is a top level graph. The data inputs of
the subroutine box are conceptually tied to the external input lines of the graph, in
the same way an agent's inputs are tied to the external input lines of its graph.

4.2 Data Paths

The method of explicitly passing data from one SUZ]TLE box to another is
through the use of a DataPath. A DataPaths connects an output port of a box with
an input port of another box. It can also be used to connect different levels of a
SUBTLE subroutine hierarchy. The plural form DataPaths is used to allow many
sending ports to write data to each of the receiving ports. The propositional and
graphical representations for DataPath and DataPaths are:

(DataPath <sending port> <receiving port>) - specifies that a data path exists
between the sending port and the receiving port.

(DataPaths (set of sending ports) {set of receiving ports)) - specifies that an
or-in/and-out data path exists between each of the the sending and receiving
ports.

.1

gI

13

Each DataPaths is a unidirectional buffered connection between each of the
sending ports and each of a set of receiving ports. The DataPaths is buffered to hold
a single piece of data. Conceptually, this buffer is located just in front of each
receiving port. When the data is read by the receiver its own buffer is emptied, but
does not affect any other buffers on the same DataPaths. If any sending box
attempts to send data down the DataPaths, the data will reach all receiving boxes
connected to the path. If any old data already exists in the buffer it will be
overwritten.

4.3 Control Links

An important concept in SUBTLE is that of control. A box can execute its
activity when it has control, but can do nothing when it does not have control.
Control is represented explicitly by tokens. When a box has a token it has control,
and is said to be executing. Control passes from box to box by means .of
TokenPaths, which are unidirectional connections between boxes. By definition, a
box retains control (a token) until it has finished executing. It then destroys any
tokens it has and passes tokens to all boxes it is connected to by TokenPaths. A box
need only have a single token to start executing, though it may have many at a time.
A TokenPath is represented in propositional and graphical form as:

(TokenPath <sender> <receiver>) - specifies the control connections between
boxes.

SUBTLE control links are used to coordinate and regulate the flow of tokens
through the SUBTLE network, and to provide other control and data manipulation
primitives. Control links can be thought of as special kinds of TokenPaths that have
additional semantics. Individual links are referred to by name, which may be any
atomic symbol, in the same way that action boxes are referred to.

The rules for building a SUBTLE graph (a subroutine) are that it is to consist of
action boxes that are linked to each other through control links. If normal control
flow is desired the control link to use is a TokenPath. In this case a TokenPath is
conceptually a token driver, that just outputs a token when it receives a token. More
complex graphs can be built using other control links that alter the normal linear
flow of control.

4.3.1 WaitFor

The WaitFor control link ;s used to halt control flow until a given sense-condition
is true. If the sense-condition is true then control passes through the WaitFor,
otherwise it goes into a wait state until for the sense-condition becomes true. The
propositional and graphical representations for a WaitFor box are:

14

(Link <WFLink> WaitFor)

(WFSensor <WFLink> <expression>) - specifies the sense-condition that <WFLink>
will wait for.

WaitFor
Cond

- - WaitFor --

r

4.3.2 Condition

The Condition control link is used to make a branch in an otherwise linear
control flow. When a Condition receives control it takes action based on its sense- ir
condition. If the sense-condition is true it passes tokens along its TrueBranch,
otherwise it passes tokens along its FalseBranch. TrueBranches and FalseBranches
are special cases of TokenPaths. The propositional and graphical representations for
a Condition link are:

(Link <ConditionLink> Condition)

(ConditionSenseCond <ConditionLink> <expression>) - declares pattern that
<ConditionLink> will use to decide the branch to pass tokens along.

(TrueBranch <ConditionLink> (set of <ActionBoxes>)) - <ConditionLink> will
send tokens to indicated boxes if <ConditionLink's sense-condition is true. 0

(FalseBranch <ConditionLink> {set of <ActionBoxes>)) - <ConditionLink> will
send tokens to indicated boxes if <ConditionLinkYs sense-condition is not
true.

TrueBranch

Condition --

-> FalseBranch

I

tp

15

4.3.3 Branching Control Links

The branching control links are used to coordinate the flow of control between
instruction streams that are to be executed in parallel. There are four different links
that specify any or all coordination at a split or join in an execution stream.

The AndOut control link is used to split the flow of control into two or more
parallel streams. It is similar to the Split node of Procedural Nets [Sacerdoti]. When
the AndOut is passed a token it passes tokens to all boxes connected to it by
TokenPaths. (This is the default for all SUBTLE boxes.) The propositional and
graphical representations for an AndOut link are:

(Link <AndOutLink> AndOut.)

The OrOut control link is similar to an AndOut link except that when the OrOut
receives a token it passes a token down only one of its connected TokenPaths, the
choice being arbitrary. The propositional and graphical representations for an OrOut
link are:

(Link <OrOutLink> OrOut)

.__1

The Orn control link is used to join parallel control streams. When an OrIn
receives a token from any of its TokenPaths it passes tokens down its output
TokenPaths. (This is the default for all SUBTLE boxes.) The propositional and
graphical representations for an OrIn link are:

(Link <OrlnLink> Orln)

mOrin

. . ,: , _ . . . ,, i i. _ " _ __ .: 1

1.6

The Andln control link is used to synchronize the execution of parallel control
streams. It is similar in effect to the Join node of Procedural Nets. When the Andin
is passed a token it checks to see if it has received tokens from all boxes that can
send it tokens. If it has received all tokens it passes tokens out, otherwise it goes into
a wait state looking for the rest of the tokens. The propositional and graphical
representations for an Andln link are:

(Link <AndlnLink> Andln)

The Interupt -

4.3.4 Interrupt and Resume

The Interrupt control link suspends or kills the execution of boxes when a given
box gets control. The Resume control link allows an interrupted box to continue
executing. The Interrupt and Resume links are different from the rest of the control
links in that they don't have tokens passed directly to them. An Interrupt link is
associated with a regular SUBTLE action box (the From box) that wishes to interrupt
another SUBTLE action box (the To box). When the From box gets control the
Interrupt link is activated and the To box is interrupted. A Resume link is similarly
associated with a To and From box. When its From box passes control on, any
interrupts on the To box are removed. In this way, a single From box can both
Interrupt and Resume a To box.

The type of interrupt that is given by an Interrupt link to its To box may be a
suspend interrupt, which holds execution of the box until a Resume link removes the
interrupt, or it may be a kill interrupt, which stops the box and destroys any tokens it
has. A Resume link cannot restart a box that has been interrupted with a kill. The
propositional and graphical representations for Interrupt and Resume links are:

(Link <IntLink> Interrupt)

(IntFrom <IntLink> <sender>) - <IntLink> asserts an interrupt when <sender> is
executed.

(IntTo <IntLink> <receiver>) -<IntLink> asserts an interrupt to the indicated box.

(IntType <IntLink> (kill or suspend)) - <IntLink> assert an interrupt of the
indicated type.

InterruptFrom /InterruptTo

* -

17

(Link <ResumeLink> Resume)

(ResumeFrom <ResumeLink> <sender>) - <ResumeLink> removes an interrupt when
<sender> is finished executing.

(ResumeTo <ResumeLink> <receiver>) - <ResumeLink> removes an interrupt from
the indicated box.

Resume~rmResume.

(These specifications are subject to revision in the near future.)

4.3.5 Returns

The Returns link is meant to be the SUBTLE analog of the Lisp return function.
It takes its arguments and sends them to the output ports of thi SUBTLE graph. It
also stops processing of the current graph and detroys any tokens remaining in the
graph. The propositional and graphical representations for a Returns link are:

(Link <ReturnLink> Returns)

(ReturnList* <ReturnLink> <exprl> ... <exprn>) - the named Return link returns
the <expri> in order as the value of the current graph. The <expri> can be
variables or inports of <ReturnLink>.

- Retum

4.3.6 Signal

The Signal link is similar to the Returns link except that it does not stop the
execution of the current graph. It is used to communicate partial results up the agent
hierarchy, and for procedures that change their outputs in time. The propositional
and graphical representations for a Signal link are:

(Link <SignalLink> Signal)

I

18

(SignalList* <SignalLink> <exprl> ... <exprn>) - the named Signal link sends
the <expri> in order up graph hierarchy to the top agent.

Signal --

4.3.7 Eye r

The Eye link is used to start a DataPath and initialize it with data from the 1
current world. The arguments are expressions that correspond in number to the
DataPaths coming into the link. When the link gets control data is placed on the
appropriate DataPath according to the current state of the world, i.e. if ta expression
is true then a "true" is put on the DataPath. If an expression contains variables the
bindings for those variables that make the expression true are placed on the
DataPath. The propositional and graphical representations for a Eye link are:

(Link <EyeLink> Eye)

(EyeList* <EyeLink> <exprl> ... <exprn>)

Condition

- -- ----- Eye - ---
-I

r"1

19

Chapter 5 -The Programming Language

While the vocabulary introduced in the last chapter is adequate for describing
behavior, it can be somewhat tedious to use; and so SUBTLE includes a more
traditional programming language equivalent. The language, Blisp, is a variant of
Lisp, extended to include some additional control capabilities.

5.1 Introduction

Digital cicuit behavior is inherently parallel. Thus any language being used to
express the behavior must provide some representation of parallelism. One of the
important features of the SUBTLE graphic language is that this inherent parallelism
is easily expressed. Representing this parallelism using a more traditional
programming language is difficult. This is primarily due to traditional programming
languages being one dimensional while parallelism requires two dimensions.
SUBTLE works because it is expressed in two dimensions. The programming
language being described in this section provides several functions that bring
parallelism into this one dimensional form. Blisp not only augments the normal Lisp

* programming language with these special functions but also provides some constructs
which can be utilized when programming in a parallel executing environment.

5.1.1 Control Flow

* Most conventional programming languages have implicit control flowv in the
sequential ordering of the instructions. Under normal circumstances as one

* instrulction completes, the next instruction in the sequential order is started. This
* ordering can be disrupted by special instructions like "GO". This flow of control

from one instrulction to the next can be metaphorically thought of as a token being
passed from one instruction to the next. Only an instruction with a token is
executing and there is at most one token in any program.

Blisp has this implicit control. However it also allows many tokens to be present
in a program. Every instruction which has a token can be thought of as executing in

paralel.Thecontrol an instruction exhibits in Blisp can be though of as either (1)
passing a token to the next instruction, (2) destroying its token, or (3) splitting the
token into many and then collapsing them back into a single token. The instruction
pat thoghwih 'oen passes is referred to in the remainder of this chapter as
the "execution path", "execution flow", or "control path".

5.1.2 The Equivalence of Blisp and SUBTLE Procedures

* Since Blisp can have many instructions execulting in parallel, it is a parallel
programming language. However, because the coding nv'thod for Blisp is that of a

* traditional programming language, some of the ease of expressiveness provided by
the SUBTLE language is lost. Blisp is not intended to be LUsed as a mapping from
the SUBTLE structure into a programming language representation. It is intended to
be an alternate form for describing behavior, It has been the experience of the
designers that SUBTLE to Blisp conversion is a nontrivial task in all bitt thle simplest

20

examples because of the representation of the parallelism. However the reverse
operation (i.e., Blisp to SUBTLE) is a much simpler task (excluding the layout
difficulties). However, SUBTLE and Blisp are equivalent in power. All that can be
represented in the SUBTLE can be represented in Blisp.

5.2 Blisp Functions

This section explains in detail the syntax, semantics, and use of each of the new
procedures that augment Lisp to obtain Blisp. In many cases samples of how the
compiler maps these instructions into the SUBTLE primitives is also provided.

5.2.1 WAITFOR

The WAITFOR statement provides a mechanism for suspending an execution path
until an external condition has been met. An example of the use of this type of
statement is a terminal which has a program that outputs characters to a main
computer. It is normally waiting for another character to be typed in. When it
recognizes the existence of the new character it run through code that transmits that
character and then returns to the wait state.

The format of the Blisp WAITFOR statement is:

(WAITFOR <pred>)

The semantics of the WAITFOR is that it is waiting until the predicate becomes true at
which time the WAITFOR completes allowing execution to continue at the next
statement.

An example of the WAITFOR is:

(WAITFOR (on light))
(princ "light seen starting device")

which states that the WAITFOR statement maintains control until some other process
makes the predicate (on light) true. Then the WAITFOR finishes and control is passed
to the princ statement.

The compiler maps the WAITFOR Blisp statement into the following SUBTLE
primitives:

(Link Wl WAITFOR)
(WFSensor W1 <pred>)
(TokenPath W1 El)

where Wl is a gensymed name for the WAITFOR box and El is the gensymed name for
the next sequential statement box (i.e., in the previous example the princ).

k
[..

21

5.2.2 CONDITION

The Blisp CONDITION statement is a decision point from which one of two paths
will be processed. It is the if-then construct for Blisp. The construct used to decide
which path to take is an external condition of the same form as that in the WAITFOR.
There are two possible formats for the CONDITION statement:

(CONDITION <pred> <then> <else>)

where if <pred> is true then the <then> function is processed otherwise the <else>
function is processed. When the <then> or <else> parts completes, the CONDITION
statement completes and execution continues at the next sequential statement.

(CONDITION <pred> <then>)

which is identical to the first form except that there is no <else> function. Thus if the
<pred> is untrue then the CONDITION statement immediately completes.

There is a distinct difference between a CONDITION and a WAITFOR statement. A
* CONDITION statement immediately passes control on to one of two execution paths

depending on the current truth of the predicate. A WAITFOR delays control until the
predicate becomes true and then allows execution along the current execution path
to continue.

An exLmple of the CONDITION statement is:

(CONDITION (on light) (princ "light is on")
(progn (moveto lightswitch)

(princ "turning light on")
(push lightswitch)))

(princ "at next statement")

which has as its <then> clause '(princ "light is on")' and as its <else> clause
'(progn (moveto lightswitch) . . . (push 1 ightswitch))'. This senses if the light
is on. If it is it prints that fact. Otherwise it moves to the lightswitch and turns it on.
In either case it continues by printing "at next statement".

The compiler maps the Blisp CONDITION statement into the following SUBTLE
primitives:

(Link Cl CONDITION)
(TrueBranch Cl Ti)
(FalseBranch C1 El)
(CondSensor C1 <pred>)
(Function TI ...
(Function El ...

The * lines are compiled into their appropriate SUBTLE forms. c1, Ti and El are
the gensymed names for the CONDIT ION statement box, the <then> statement box and
the <else> statement box respectively.

1 22 -

5.2.3 CONDITIONS

The CONDITIONS statement is the Blisp version of the COND statement. It allows
multiple predicate Blisp pairs. The statement that is associated with the first
predicate that is true will be executed. The COMDITIONS statement returns the value
of the executed statement. The format is:

(CONDITIONS (<pred1 > <bstmtl>)

(<predn> <bstmtn>))

This is equivalent to the following CONDITION form:

(CONDITION <pred1 > <bstmtl>

(CONDITION <predn_.> <bstmtn_ 1> <bstmtn>))

For example:

(CONDITIONS ((low light) (adjust meter 3))
((medium light) (adjust meter 1)) P
(T (princ "no adjustment necessary")))

adjusts the meter to 3 if the light is low, to 1 if the light is medium or prints a
message that the meter doesn't need adjustment.

5.2.4 ALLALL

The ALLALL statement divides execution flow into many paths, all of which can be
executed in parallel and all of which must finish before the ALLALL statement
completes. This is one of the statements that provides parallelism for Blisp. The
format of the ALLALL statement is:

(ALLALL <bstmt1 > ... <bstmtn>)

where (bstmti>is a Blisp statement.

An example of the ALLALL statement is:

(ALLALL (setq a (- x y))
(setq b (+ x y)))

(setq c (* a b))

The calculation of a and b can be accomplished in parallel but the execution of the
(setq c ...) can not take place until both a and b have been calculated (i.e., the
ALLALL statement completes).

The compiler maps the ALLALL statement into:

(Link Al AndOut)
(Link A2 Andln)

23

(Function bstmtnameI ...

(Function bstmtnamen ...)*
(TokenPath Al bstmtnamel)

(TokenPath Al bstmtnamen)
(TokenPath bstmtname, A2)

(TokenPath bstmtnamen A2)

where the * lines are compiled into their appropriate forms. Notice that the
compiler maps this into two separate functions. One that divides control into the
multiple paths and one that collapses these multiple paths back into one path.

5.2.5 ALLONE

The ALLONE statement is also used to divide execution into many paths.
However, while ALLALL requires all the execution paths to finish, ALLONE only
requires one of the execution paths to finish before it is complete. A use of the
ALLONE statement is when there are several methods of obtaining an answer. All can
be started, run in parallel, and the first that produces an answer allows the execution
path to continue. (This description of the ALLONE statement permits the statement to
be exited once. There is another instance of the ALLONE concept in which each
completion of one of the paths causes execution to continue along the execution
path. This form is not currently permitted in Blisp.) The format of the ALLONE is:

(ALLONE <bstmtl> ... <bstmtn>)

where <bstmt i > is a Blisp statement.

An example of the ALLONE statement is A

(setq b (ALLONE (sqrtl a) (sqrt2 a) (sqrt3 a)))

There are three different square root routines that use different methods. The first
one to complete provides a value to b and then the execution continues along the
path.

The compiler maps the ALLONE statement into the following SUBTLE primitives:

(Link Al AndOut)
(Link A2 OrIn)
(Function bstmtname1 ...

(Function bstmtnamen ...

(TokenPath Al bstmtnamel)

(TokenPath Al bstmtnamen)
(TokenPath bstmtname I A2)

7

1 24

(TokenPath bstmtnamen A2)

where the * lines are compiled into their appropriate forms. Notice that the
compiler maps this into two separate functions. One that divides control into the
multiple paths and one that collapses these multiple paths back into one path.

5.2.6 SETQS

The SETQS statement is a multiple setq statement that allows one to setq the
values of one list into the variables of another. The format of the SETQS statement is:

(SETQS <varlist> <value> ... <valuen>)

where <varlist> is a list of variable name and each <valuei> is evaluated. The
<valuei>*s are assigned to <varlist> in order. If the number of values is smaller than
the <varlist> then the unused items in <varlist> are not assigned values. For
example:

(SETQS (a b) 1 2)

is equivalent to:

(setq a 1)
(setq b 2)

and

(SETQS (a b c) 1 2)

is equivalent to:

(setq a 1)
(setq b 2)

5.2.7 RETURNS

The RETURNS statement is an exit out of a subroutine that returns a set of values
which are the arguments to the calling routine. All called processes embedded
within a execution path must exit using a RETURNS statement. If they don't then the
execution path in which they were called is terminated. The format of the RETURNS
is:

(RETURNS arg1 ... argn)

For example:

(RETURNS 'a (list 'ab))

return to the calling program the set of values a and (ab).

25

5.2.8 DIE

The DI E statement is used to explicitly indicate that execution along an execution
path terminates. Called procidures embedded in an execution path must return a
value inorder for that execution path to continue. This statement provides explicitly
the information that this will not happen. The format of the DIE statement is:

(DIE)

For example:

(COND (equal n 3) (RETURNS n 10)
(DIE))

will return the values (n 10) if n=3 otherwise it will terminate execution along the
execution path of the calling routine.

5.2.9 INTERRUPT

The INTERRUPT statement allows one execution path to halt another execution
path. This is only viable in an environment in which there is more than one
execution path being processed in parallel. If the statement identified as being
interrupted is not currently being executed then, in effect, this is a no-op (i.e., has no
operational effect). The format of the Blisp INTERRUPT statement is:

(INTERRUPT <label>)

where <label> is the label of the Blisp statement in the hierarchical scoping structure
of the INTERRUPT statement. Tile Blisp statement associated with the label is halted
by the INTERRUPT statement.

A RESUME statement (described next) allows the interruptted statement to
continue executing. The lack of a RESUME statement, in effect, kills the execution
path in which the interrupted statement is contained.

Consider these two partial programs:

program1 line (calculation x y)

program2 (interrupt line)

Suppose both programs I and 2 are running and program 1 is at the instruction at
line. If program2 executes the (INTERRUPT line) instruction then the "calculation"
statement will be halted. Hence that execution path in program 1 will be halted.

I-i

26 V

The compiler maps the Blisp INTERRUPT statement into the following SUBTLE
primitives:

(Function I1 INTERRUPT)
(IntFrom It Ni)
(IntTo Ii <label>)

where N1 is the name of the Function of the next Blisp statement following the
INTERRUPT statement and <label> is the name of the Function associated with the
interrupted statement.

5.2.10 RESUME

The RESUME statement is the counterpart of the INTERRUPT statement and is only
meaningful if an INTERRUPT statement has been previously executed on the same r
label. The RESUME statement permits an interrupted statement to continue executing.
If the statement is not in an interrupted state then it is in effect a no-op.

The format of the RESUME statement is:

(RESUME <label>) P]

where <label> is either a label or a Blisp statement within the scope of the RESUME

statement.

If a <label> has both a RESUME and INTERRUPT statement associated with it, then it
can be thought of as only being temporarily halted during the execution of some w
other part of the program. If their is no RESUME statement then it can be thought of
as being terminated by the execution of another part of the program. Just having a
RESUME statement is meaningless.

Consider the example from the INTERRUPT statement with the inclusion of a
RESUME statement:

programl line (calculation x y)

program2 (INTERRUPT line)
(princ "testing interrupt-resume")Lp (RESUME line)

The calci'lation at line is only temporarily halted while the message "testing
interrupt-resume" is printed.

The compiler maps the Blisp RESUME statement into the following SUBTLE
primitives:

27

(Function I1 RESUME)
(ResumeFrom I1 P1)
(ResumeTo I1 <label>)

where NI is the name of the function of the Blisp statement preceding the RESUME
statement and <label> is the name of the function associated with the interrupted
statement.

5.2.11 WAIT

The WAIT statement stops execution along a path for a given number of time
cycles. This is a way of internally delaying execution along a path. The format of
the WAIT is:

(WAIT <n>)

where <n> is the number of time units execution is to be delayed.

For example:

(ringalarm)
(WAIT 10)
(condition (not (new-input)) (princ "are you still sleeping?"))

executes ringalarm (e.g., a routine that rings the bell at your terminal) and then
waits for 10 time cycles before it checks to see if there is new input from the
terminal. If there isn't, it writes the message to the terminal)

5.2.12 TIME

The TIME statement indicates the number of time cycles required before a Blisp

statement can produce a value. The format of the statement is:

(TIME <n> <Blisp-stmt>)

where the <Blisp-stmt> will not complete until <n> cycles have passed from the
time it was started. It is similar to the following:

(WAIT <n>)
(Biisp-stmt)

28

5.3 Monostable Multivibrator

The following set of Blisp programs describe the workings of a monstable
multivibrator circuit. A mon6stable is used to generate a pulse of a given width by
making one of its inputs high. The circuit behaior as follows: If either the cir line is
low, input-a is high or input-b is low, then the circuit is in a reset condition with its
primary output low and its inverted output high. If any of the inputs are in this state
then the circuit can be said to be in initialized state. If any input changes from an
initilized state into its inverted state while the other two inputs are in their non
initialized states then a pulse is produced on the output line. After this is done one
of the inputs must be reset to the initialized value. For example, if clr=high, a=low
and b=low then the output=low (because b=low). If b then changes to high, a
pulse will be produced on the output. No additional pulses can be triggered until
one of the inputs is forced to its other state and then changed.

(defun monol (a b cir)
(prog (q qbar)

(condition (or a (not b) (not cir))
(progn (interrupt mono2)

(setq q low)
(setq qbar high)
(returns q qbar))

(die))

(defun mono2 (a b clr)
(condition (or (and (falling a) clr b)

(and (not a) (rising clr) b)
(and (not a) Or (rising b)))

(returns 'high-pulse 'low-pulse)
(die)))

(defun mono (a b clr)
(prog (pulse pulse-inv)

(allany (setqs (pulse pulse-inv) (monol a b cir))
(setqs (pulse pulse-inv) (mono2 a b clr))
) p

(returns pulse pulse-mnv)K)

29

Chapter 6- Teleological Description

The teleology of a circuit is an argument explaining how the circuit's structure
gives rise to its behavior. The word teleology is used because such arguments
implicitly include the purpose of each of the circuit's components.

6.1 Justifications

The justification of an expectation about a circuit's behavior is a trace of the
reasoning steps necessary to prove the expectation given the circuit's structure and its
inputs. In SUBTLE each step in a justification is encoded as a separate statement of
the form (just q m pi . . pn), where q is the conclusion, m is the reasoning
method, and pi, .. ., pn are the premises. For example, the statement below presents
an argument explaining why the output of M74 is expected to be on using the
backward chaining method bc-truep.

(just (on (output I M74)) bc-truep
(if (and (conn $x Sy) (on Sx)) (on $y))
(and (conn (output 1 and3-1) (output 1 M74))

(on (output 1 and3-1))))

Currently, SUBTLE includes the following set of reasoning methods.

ex-truep - universal instantiation and existential generalization
bc-truep - backward chaining
truep-and - conjunction
truep-or - disjunction
assume - assumption

This set was chosen because it corresponds to the basic inference methods in
SHAM.

6.2 Design Knowledge and Meta-Teleology

<to be written>

I I.

*_ - .

30

Chapter 7 -Conclusion :
(to be written>

References

MRS paper
Petri Nets

2
Mano

Procedural NetsI

SDL and ADLIB

7:

31

Appendix 1 -The Syntax of MRS

MRS is a prefix version of the language of predicate calculus.

AI.1 Symbols

There are two types of symbols in MRS, viz. variables and constants. Variables]
are useful for stating facts about all members of a set or for declaring the existence of
an object without naming it. The use of variables is elaborated below in the
discussion of quantified propositions.

There are three different types of constant symbols. Object symbols name
specific objects or concepts in the world being described, e.g.

N74
inverterB
2x4decoders (the set thereof)
AND3-3
Stanford
Kennedy

Function symbols are intended to represent functions on the objects of the
world, e.g.

sizein
type
president-of
height-of

Relation symbols represent relations between objects of the world, e.g.

subpart
>

older-than
neighbor

A1.2 Terms

In MRS one can also designate objects by combining these symbols into more
complex expressions, called terms. All variables and constants are terms by
definition. In addition, given an n-ary ftnction symbol f and n terms ti, tn,
then the expression (f ti . . . tn) is also a term. For example, the following
expressions are legal terms.

(subpart M74)
(sizein AND3-3)
(president-of Stanford)
(+ 2 2)
(height-of (president-of Stanford))
((+ 2 2) 3)

7

32

A1.3 Atomic Propositions

Facts can be stated withn MRS in the form of propositions. Given an n-ary
relation symbol r and n terms t1, tn, the expression (r ti . . . tn) is an

atomic proposition. The following are examples.

(subpart M74 AN03-3)
(neighbor Palo-Alto Menlo-Park)
(> (0 2 3) (+ 2 3)).

A1.4 Logical Expressions

Unfortunately, not all facts are so simple. One often needs to express negations
(e.g. "Lyman is not the president of Stanford), disjunctions (e.g. "Either Lyman is
president or Kennedy is president"), and contingencies (e.g. "If George is at home,
he must be sick"). In MRS facts like these can be written by relating the appropriate
atomic propositions via logical symbols such as not, and, or, and itf. For example,
these sentences could be written as follows.

(not ((sizein AND3-3) 2))
(not (= (president-of Stanford) Lyman))
(or (= (president-of Stanford) Lyman)

(= (president-of Stanford) Kennedy))
(if (location george home) (sick george))

AI.5 Quantified Propositions

Finally, there are quantified propositions. With the syntax given so far, one can
only write facts by naming the objects involved. There's no simple way to talk about
all the members of a set or state the existence of an object without naming it.
Quantifiers enable one to state facts like "All apples are red" and "There's a doctor
in the house". There are two quantifiers in MRS, viz. all and exist. The
proposition (all xl . . . xn (p xl . . . xn)) states that (p xl . . . xn) is true for
all possible values of the variable symbols xl, ... xn. The proposition (exist xl
* . xn (p x1 . . . xn)) states that there exist objects al, an for which (p al
* an) is true. For example, the first proposition below states that all apples are red,
and the second says that there's a doctor in the house. Quantified propositions can
also occur within non-atomic propositions, as in the last two examples.

(all x (if (mem x apples) (color-of x red)))
(exist x (and (mem x doctors) (location-of x house)))
(or (all x (apple x)) (some x (pear x)))
(all x (exist y (> y x)))

Multiple variables of the same type can be declared within a single quantified
proposition, as illustrated below. Note, however, that the ordering of quantifiers is
essential whenever a quantified proposition is nested within another. For example, the
last two propositions mean two very different things. Information about the order of
nesting of quanti fled propositions is sometimes referred to as skolem information.

l1
p
]-

j

33

(all h r (if (and (horse h) (rabbit r)) (can-outrun h r)))
(exist x y (and (= (+ x 1) y) (u (2 x) y)))
(all x (exist y (loves x y)))
(exist y (all x (loves x y)))

Two useful syntactic features are illustrated in the examples below. The first is
the use of the prefix characters $ and ? to denote universal variables and leftmost
existential variables. Each member of the following pairs of assertions is equivalent
to the other.

(all x (if (neighbor x Bertram) (neighbor x Beatrice)))
(if (neighbor Sx) (neighbor $x Beatrice))
(exist x (and (apple x) (color-of x red)))
(and (apple ?x) (color-of x red))

Second, a function in MRS can also be used as a relation in propositions where
the value is specified as the last argument.

(= (sizein AND3-3) 3)
(sizein AND3-3 3)

r

* p

I .q 34

Appendix 2 - SUBTLE Dictionary

A2.1 Structural Vocabulary:

conn - (conn (x> <y>)
States that the "port" (input or output line) <x> is connected to to the port
<y>. Note that the connection is conceptual; at one level of detail two ports
may be simply connected whereas at a lower level of detail the connection is
described more completely as consisting of some wires or solders together
with their connections.

conn* - (conn* <xl> <yl> ... <yn>)
Is equivalent to (conn <xl> <yl>) (conn <xl> <yn>).

input - (input M1> <device>)
Refers to the <i>th input line of object <device>.

output - (output (M> <device>)
Refers to the <i>th output line of object <device>.

subpart - (subpart <part> <device>)
States that the object <part> is a component of <device>.

subpart* - (subpart* <parti> ... <partn> <device>)
Is equivalent to (part <parti> <device>) ... (part <partn> <device>)

prototype - (prototype <name> <type>)
States that <name> is a prototype for the generic circuit of type <type>. All of
the properties of <name> are "inherited" by every instance of the type.

skolem - (skolem (<xl> ... <xm>) (<yl> ... <yn>))
States that <yi> ... <yn> are existential variables governed by the universal
variables <xl> ... <xm>. The statement is useful in specifying the parts of a
description that are unique to each instance of a generic circuit.

type - (type <device> <type>)
States that <device> is an object of type <type>.

*1

S:.. : i p::

35

A2.2 Behavioral Vocabulary:

Box - (Box <agent> (<ActionBox> or <set of ActionBoxes>))
(agent> has the given SUBTLE Boxes as part of its structure.

ConditionSenseCond - (ConditionSenseCond <ConditionLink> <expression>)
Declares pattern that <ConditionLink> will use to decide the branch to pass
tokens along.

ContSenseCond - (ContSenseCond <ActionBox> <expression>)
Continuous sense-condition of ai action box.

DataPath - (DataPath <sending port> <receiving port>)
Specifies that a data path exists between the sending port and the receiving
port.

OataPaths - (DataPaths (set of sending ports) (set of receiving ports))
Specifies that an or-in/and-out data path exists between the sending and
receiving ports.

DefLambda - (DefLambda <name> (arg1 ... argn) <body>)

Specifies that the Function of a box will be a lambda with name <name>.

FalseBranch - (FalseBranch <ConditionLink> (set of <ActionBoxes>))
<Conditi onLink> will send tokens to indicated boxes if<ConditionLin k>'S
database sense-condition is not true.

Function - (Function <ActionBox> <FunctionDescriptor>)

The functionality of <ActionBox> is given by <FunctionDescriptor>, where
<FunctionDescriptor> is the name of either a Lisp or SUBTLE subroutine.

InitSet - (InitSet <agent> (set of <ActionBoxes>))

Specifies the boxes to receive tokens when the agent is started for the first
time.

InitSet - (InitSet <subroutine> (set of <ActionBoxes>))

Specifies the boxes to receive tokens when the subroutine is passed a token.

Inport - (Inport <port#> <ActionBox>)
Function that refers to the numbered input port of <ActionBox>.

IntFrom - (IntFrom <IntLink> <sender>)
<IntLink> asserts an interrupt when <sender> is executed.

IntTo - (IntTo <IntLink> <receiver>)
<IntLink> asserts an interrupt to the indicated action box.

IntType - (IntType <IntLink> (kill or suspend))
<IntLink> assert an interrupt of the type indicated.

Link - (Link <ControlLink> <type>)
<ControlLink> is a control link of type <type>.

36

OSSenseCond -(OSSenseCond <ActionBox> <expression>)
One-shot sense-condition of an action box.

Outport - (Outport <port#> (box>)
Function that refers to the numbered output port of <box>.

ResumeFrom - (ResumeFrom (ResumeLink> (sender>)
(ResumeL ink> removes an interrupt when (sender> is finished executing.

ResumeTo - (ResunieTo (ResumeLink> <receiver>)
(ResumeLink> removes an interrupt from the indicated action box.

Returnhist* - (Returnhist*,(ReturnLink> (exprl> ... (expr,>)

The named Return link returns the <expr 1> in order as the value of the
current graph. The (expri> can be variables or inports of (ReturnLink>.r

RunTime - (RunTime <ActionB'ox> (time>)
Time that -"ActionBox> requires to execute.

SignalList* - (SignalList* (SignalLink> <exprl> .. . (exprn>)
The named Signal link send the <expr i> in order up graph hierarchy to the
top agent.

TokenPath - (TokenPath <sender> ((receiver> or (set of receivers>))
Specifies the control connections between SUBTLE boxes.

TrueBranch - (TrueBranch (ConditionBox> (set of (ActionBoxes>))
(ConditionBox> will send tokens to indicated boxes if (Condition~ox>'S sense-
condition is true.

TruepList* - (TruepList* (TruepLink> <exprl> ... (expr0>
Fetches the valuLe of the < e xp r i from the current local context and places the
results on the Truep link's outports.

WFSenseCond - (WFSenseCond (WFLink> (expression>)
Declares pattern that (WFLink> will wait to occur.

37

A2.3 Blisp: Lisp + the following "functions"

ALLALL - (ALLALL ARGI ... ARGn)
Each ARGi is started abd, when all have finished, control is passed to the
statement following the ALLALL. If any fail to complete (i.e., it dies), the
ALLALL statement fails and control terminates along that path.

ALLONE - (ALLONE ARGI ... ARGn)
Each ARG i is started and when any have finished, control is passed to the
statement following the ALLONE. If all fail to complete (i.e., they all die), the
ALLONE statement fails and control terminates along that path.

CONDITION -

(1) (CONDITION ARGI ARG2)
(2) (CONDITION ARGI ARG2 ARG3)
1. If ARGI is true then execute ARG2.
2. If ARGI is true then execute ARG2 otherwise execute ARG3.
In both cases continue on.

CONDITIONS - (CONDITIONS (prod statement) ... (pred statement))

This is the Blisp version of the COND statement. The -first predicate which is
true causes its paired statement to gain control and execute. If the statement
dies then control flow ends on this path.

DIE - (DIE)

Subroutine stops unnaturally without returning a value. Control flow is
stopped along this path.

INTERRUPT - (INTERRUPT ARGI)

The program named by ARG1 is forced to die without returning a value.

RETURNS - (RETURNS item-1 ... item-n)

Return a list of values from a subroutine.

SETQS - (SETQS (listi) (Iist2))
Each of the individual items in listl (unevaluated) is assigned a value from
list2 (evaluated).

TIME - (TIME <time> <Blisp-statement-l> ... <Blisp-statement-n>)
The simulator will not produce results from the Blisp-staternents for <time>
cycles. The <Blisp-statement-i> can be any Blisp statement.

WAIT - (WAIT <n>)

Delay for <n> time cycles before continuing with execution of this control
path.

WAITFOR - (WAITFOR ARGI)
When ARGi becomes true, execution can continue otherwise it waits for ARGI
to become true. NO statement after the WAITFOR will be executed until the
WAITFOR condition becomes true.

*7

II

38

Appendix 3 - Library of Standard Circuits
... :

the behavioral description of an inverter

(if (and (type $inv inv) (on (input I $inv)))
(off (output I $inv)))

(if (and (type $inv inv) (off (input I $inv)))
(on (output 1 $inv)))

the behavioral description of an and-gate

(if (and (type Sand and-gate) (on (input 1 Sand)) (on (input 2 Sand)))
(on (output I Sand)))

(if (and (type Sand and-gate) (off (input 1 Sand)))

(off (output 1 Sand)))

(if (and (type Sand and-gate) (off (input 2 Sand)))
(off (output I Sand)))

the behavioral description of a 3-input and-gate ...

(if (and (type Sand3 and3)
(on (input 1 Sand3)) (on (input 2 Sand3)) (on (input 3 Sand3)))
(on (output I Sand3)))

(if (and (type Sand3 and3) (off (input 1 Sand3)))
(off (output 1 Sand3)))

(if (and (type Sand3 and3) (off (input 2 Sand3)))
(off (output 1 Sand3)))

(if (and (type Sand3 and3) (off (input 3 Sand3)))

(off (output 1 Sand3)))

K.-

39

the behavioral description of an or-gate

(if (and (type Sor or-gate) (or (on (input 1 Sor)) (on (input 2 $ot))))
(on (output I $or)))

(if (and (type Sor or-gate) (off (input 1 $or)) (off (input 2 Sot)))
(off (output 1 $or)))

the behavioral description of an xor-gate

(if (and (type Sxor xor-gate) (off (input 1 Sxor)) (off (input 2 Sxor)))
(off (output I txor)))

(if (and (type $xor xor-gate) (off (input I $xor)) (on (input 2 $xor)))
(on (output I $xor)))

(if (and (type $xor xor-gate) (on (input 1 Sxor)) (off (input 2 Sxor)))
(on (output I Sxor)))

(if (and (type Sxor xor-gate) (on (input I $xor)) (on (input 2 Sxor)))
(off (output 1 txor)))

40

Structural Description of a full adder. See Mano page 20.

(prototype fa-i full-adder)
(sizein fa-i 3)
(sizeout fa-1 2)

(subpart* xor-1 and-i xor-2 and-2 or-1 fa-i)
(type xor-1 xor-gate)
(type and-i and-gate)
(type xor-2 xor-gate)
(type and-2 and-gate)
(type or-i or-gate)

(conn* (input I fa-1) (input 1 xor-1) (input I and-i))
(conn* (input 2 fa-1) (input 2 xor-1) (input 2 and-i))
(conn* (input 3 fa-1) (input 1 xor-2) (input 1 and-2))
(conn* (output 1 xor-1) (input 2 xor-2) (input 2 and-2))
(conn* (output 1 and-) (~input i or-i))
(conn* (output 1 and-2) (input 2 or-i))

(conn* (output I xor-2) (output i fa-1))
(conn* (output 1 or-i) (output 2 fa-1))

I

ip

41.

;;;, 2x4 is an implementation of a 2x4-decoder. See Mano page 53.

(prototype 2x4 2x4-decoder)
(sizein 2x4 3)
(sizeout 2x4 4)

(subpart* inv-i inv-2 and3-1 and3-2 and3-3 and3-4 2x4)
(type inv-1 inv)
(type inv-2 inv)
(type and3-1 and3)
(type and3-2 and3)
(type and3-3 and3)
(type and3-4 and3)

(conn* (input 1 2x4) (input 1 inv-1) (input 2 and3-3) (input I and3-4))

(conn" (input 2 2x4) (input 2 and3-2) (input 2 and3-4) (input 1 inv-2))
(conn" (input 3 2x4) (input 3 and3-1) (input 3 and3-2)

(input 3 and3-3) (input 3 and3-4))
(conn* (output 1 inv-1) (input 1 and3-1) (input 1 and3-2))
(conn* (output I inv-2) (input 2 and3-1) (input 1 and3-3))
(conn* (output I and3-1) (output 1,2x4))
(conn* (output 1 and3-2) 'output 2 2x4))
(conn* (output 1 and3-3) (output 3 2x4))
(conn* (output 1 and3-4) (output 4 2x4))

4U

i

II

-

FILME

